

REPUBLIC OF SLOVENIA MINISTRY OF FOREIGN AFFAIRS

AII-FORA online Side-Event

"Saline intrusion: a potential risk for coastal aquifer management in a changing climate"

10th May 10:00 – 12:00

1st technical session – "Saline intrusion: a potential risk for coastal aquifer management in a changing climate"

Nicola Quaranta, Elena Cogo (Geo engineering, Turin, Italy) hydrogeologist external expert – Municipalities of Fano (PU, IT)

REPUBLIC OF SLOVENIA MINISTRY OF FOREIGN AFFAIRS

Short index

- ☐ ASTERIS topics (p.3)
- ☐ RISK ASSESSMENT (p.4-6)
- ☐ MONITORING & CONCEPTUAL MODELS (7-8)
- PLANNING THE ADAPTION
- ☐ BEST PRACTICES (10-22)
- ☐ GUIDELINES FOR ADAPTATION MEASURES (p.25-37)

ASTERIS

Adaptation to Saltwater inTrusion in sEa level RIse Scenarios

https://www.italy-croatia.eu/web/asteris

Regional high-resolution Maps of Sea-level (cm at 2100 above 2015 level)

Vulnerability (V_H) = Aquifer susceptibility (S_A) * hazard threat (T_H) Risk (R_H) = Vulnerability (V_H) * Loss (L)

Regional -> local approach

map of vulnerability to coastal salinization at the macro regional scale (Adriatic) based on future scenarios for sea Case study area of Fano: level rise and the hydrological cycle.

risk of salt ingression

WP4 – MONITORING MANAGEMENT OF COASTAL AQUIFERS &CONCEPTUAL MODELS

The understanding of the influences of sea level rise on salt ingression is <u>not</u> <u>uniform at a local scale</u> depending on a complex of factors for each site, including the hydrogeological setting, local rates of ground water extraction and hydrological regimes.

WP4 – MONITORING MANAGEMENT OF COASTAL AQUIFERS &CONCEPTUAL MODELS

Ravenna Case Study WP 4.1.2

Fano Case Study WP 4.1.2

Activity details WP 5.1

D.5.1.1 – Priority issues:

- Physical (=> climate induced change on sea level & hydrology)
 - Management (=> exploitation of resources)

D.5.1.2 – Best practices

from Priority Issues to B.P.

Focus on case studies (or similar situations)

Activity details WP 5.2

D.5.2.1 – Guidelines for adaptation measure:

D.5.2.2 – Booklet on adaptation plans

One for each of the three case studies
Application of guidelines in different
contexts

NB – actions selected by «low-C0₂ emission» criteria!

a. Knowledge heterogeneity (spatial&time-depending) of aquifer salinization <u>"SWI" - WEB-GIS (National-Regional Environmental Agencies)</u>

Making knowledge systematic and capillary-diffused

b. (over?)exploitation of groundwater bodies "with poor quantitative control"

Re-orienteering groundwater pumping

Facilitate deepening of interface zone

c. Climate change (temperature-rain => ETP/I distribution)

Facilitate infiltration and storage of surface runoff

- d. Setback of the coast line

 Active practices against shoreline erosion
- e. Agricultural & Wet-zone coastal management

land use selection of plants/crops tolerant to salt limits

5.1.2.b) Re-orienteering groundwater pumping

Planning of methods, places and times of pumping:

- Limitation in the use of deep wells (revision of concessions water saving). IT National Environmental Law D.Lgs. 152/99, art.96 "limitations to abstractions"
- Relocation of wells / pumping centers (strategic planning: "PTA", Water Management Plan III cycle 2021-2027, IT District Authorities)
- 3. <u>Preserve</u> the use of fresh groundwater for valuable uses (IT-AATO)
- 4. Encourage alternative water supplies for less-valuable uses (agricultural and / or industrial) with joint use of surface and groundwater

5.1.2.b) Re-orienteering groundwater pumping

- 5. Reduce current irrigation needs by:
 - Use of farming techniques and irrigation water distribution with <u>innovative and technologic</u> plants (micro-irrigation systems capable of providing only the water necessary to maintain the soil-cultivation system to be irrigated at maximum production potential).
 - Management of irrigation networks with dedicated pipeline networks (upgrade/update Drainage & Irrigation Plans – IT Regional Level)
 - Promotion of <u>photovoltaic power supply pumping system</u>

D.5.1.2 – Best practices

5.1.2.b) Facilitate deepening of interface zone

Physical barriers

Subsurface Barriers

Land Reclamation

Surface barriers (river estuarine)

Bridges with mobile weir (against river salt wedge)

After countermeasure action

D.5.1.2 – Best practices

5.1.2.b) Facilitate deepening of interface zone

TERRENI

SUPERFICIE

High water channel

ACQUIFERO

ACQUA

5.1.2.b) Facilitate deepening of interface zone

Hydraulic barriers - Case study Salento (Puglia, IT)

Project condition: injection wells of treated waste-water (Lecce)

5.1.2.b) Facilitate deepening of interface zone

Mixed systems: Abstraction, Desalination, and Recharge

- ✓ Continuos abstraction of saltwater
- ✓ Desalination (Reverse Osmosis plant)
- ✓ Partial re-use of desalinized water for artificial recharge

5.1.2.b) Facilitate deepening of interface zone

Mixed systems: abstraction, desalination, and recharge by treated wastewater (direct/undirect)

- ✓ Continuos abstraction of saltwater
- ✓ Desalination (reverse osmosis plant)
- ✓ Use of treated waters for low-valuable purpose
- ✓ Waste-water treatment
- ✓ Artificial recharge (direct by injection wells or recharge pond)

D.5.1.2 – Best practices

5.1.2.c) Facilitate infiltration and storage of surface runoff

Shallow aquifer

Lido di Dante Test Area (Ravenna), 2011. N. Greggio

D.5.1.2 – Best practices

5.1.2.c) Facilitate infiltration and storage of surface runoff

Decentralised rainwater management in urban areas

5.1.2.d) Active practices against shoreline erosion

Realization of:

- soft type works
- rigid type works
- semi-rigid works
- Measures based on innovative techniques and / or materials:
 - renaturalization and reconstruction of the dune bars,
 - ✓ construction of naturalistic engineering works (walkways for access management)
 - ✓ construction of windbreak barriers
 - ✓ planting of pioneer species, which stabilize the dune and retain the sand

upgrade/update Coast Defense Plane – IT Regional Level

5.1.2.d) Active practices against shoreline erosion

Fano (PU), Ponte Alto

5.1.2.e) Land use selection of plants/crops tolerant to salt limits

Apply measure to adapt salt intrusion with an appropriate land use planning:

- reasonable shifts in agricultural practices;
- selection of plants and crops which can be tolerant to various salt limits;
- applying advanced cultivation techniques;

project hard-engineered structures for salt prevention and freshwater conveyance

in freshwater-scarce areas.

Salt tolerance of crops is described by a graph of the relationship between crop yield and salinity values

5.1.2.e) Land use selection of plants/crops tolerant to salt limits

CASE STUDIES (USA)

Gradual Sea Level Rise + Episodic Salt Water Intrusion

VULNERABILITY CLASS MITIGATION AND ADAPTATION MEASURES 1 - FRESHWATER **Monitoring and prevent** Re-orienteering groundwater pumping, improve media communication of good practices 2 – MIXING ZONE Water Control: groundwater abstraction limitations; water control infrastructure such as hydraulical barriers and storage of surface runoff; **Irrigation Methods:** leaching soils with freshwater can reduce salinity in well-drained soils and conditions where the groundwater table is not close to the surface. Land use planning: 1. reasonable shifts in agricultural practices; 2. selection of plants and crops which can be tolerant to various salt limits; 3. advanced cultivation techniques such as less water irrigation practices of alternate wetting and drying and salt tolerance enhancement 3 – **SALTWATER Water Control:** hard-engineered structures (physical barriers such as flood gates, dikes, levees, and valves) Land use planning: cultivated salt-tolerant grass and plants species

Active practices against shoreline erosion

D.5.2.2 – Booklet on adaptation plans Application of guidelines in different contexts

- i. Why an adaptation plan to salt intrusion in coastal aquifer?
- ii. Involving of stakeholders: which roles (and rules)?
- iii. Check list of actions & priority
- iv. Test-sites, pilot areas: where, when & why?
- v. Monitoring, evaluating and optimizing of adaptation plan: how to improve?
- vi. Extensive run of adaptation plans: what's the goal?

i. Introduction — why an adaptation plan? Wrap-up questions

What is salt intrusion in coastal aquifer? (graphic/design comparing present situation and future scenario)

What are the potential impacts to communities and the resources they depend on?? (synthesis in technical & non-technical language of WP3 – scenarios and WP4 – risk mapping)

Why should communities care about it and get involved? What can communities do to prepare for and adapt to salt intrusion in coastal aquifer?

- ✓ Protection of the beach from sea level rise and storm surge frequency
- ✓ Protection of ground water resources for different uses (drinking, irrigation, industrial, domestic)
- ✓ Maintenance of underground infrastructures (technological networks, sewers etc.) and buildings (underground rooms, foundations etc.)
- ✓ Coastal bio-diversity protection (where applicable / sensitive)

ii. Involving of stakeholders: which roles (and rules)?

PRIVATE

National level

Trade associations
Industry, agriculture associations
(promoters of water saving devices)

Regional & Provincial Level

Managers of integrated water cycle (use of groundwater for human purposes)

Irrigation and Drainage Consortium; Industry &

farmer associations (groundwater users)

Drilling companies (aquifer exploitation)

Municipal level

Environmental groups (knowledge dissemination)

Social media (awareness diffusion)

Foundations (financing)

..... (others)

PUBLIC/INSTITUTIONS

National level

District basin authority (management plan of water resources - 2000/60/CE)

Universities/Research centers (technology development and its applications)

Regional & Provincial Level

Environmental Protection Agencies (groundwater monitoring network)

Policy-makers and environmental planners Regional Parks, Manager of Natura 2000 sites,

SIC/ZPS (environmental and coast protection)

Municipal level

Environmental services (direction and coordination)

Strategic planners (land-use modifications)

Urban planners (application of guidelines)

D.5.2.2 – Booklet on adaptation plan

WP5 - PLANNING THE ADAPTATION

iii. Check (priority) list = local action plane

CONTROL ROOM

Monitoring coastal aquifer
Numerical simulation models
GW nowcasting & forecasting

WATER RESOURCE MANAGER

Planning sustainable water use Control of abstraction rates

Relocation of wells / pumping centers
Reuse of purified waste water
Desalinization

URBAN ENVIRONMENT

Freshwater storage & ponding/infiltration
Active practices against shoreline erosion /
coastal design & buffer zones
Hydraulic barriers (MAR)
Physical barriers
Adaptation of underground structures e
infrastructures
Progradation of the coastline

AGRICULTURE & IRRIGATION

Adapting current irrigation techniques & needs

Enhancing salt tolerance of plants and crops Freshwater storage & ponding

300-400 m

iii. Check (priority) list = local action plane

WP5 - PLANNING THE ADAPTATION

iv. Test-sites, pilot areas: where & why?

Preparation of integrated monitoring devices of • coastal water resources, headed by coordinated • control bodies, with continuous instruments that • combine (along transects – reference IT ISPRA-SNPA Manuals & Guidelines 15.5.2017 Doc-8) •

- Aquifer phreatimetry / pressure
- Salinity
- Hydro-chemical and physical characteristics of water (isotopes, age, temperature)
- Tidal measurements
- Rainfall
- · Geophysical measurements

iv. Test-sites, pilot areas: where & why?

iv. Test-sites, pilot areas: where & why?

Purposes:

- Verify the mineralization of aquifer levels at increasing depths, discriminate the nature and origin of saline waters with isotope (and age) analysis;
- Monitoring the evolution of the interface and intrusion following the implementation of "Best practices" (increase or decrease of salinization).

D.5.2.2 – Booklet on adaptation plan

iv. Test-sites, pilot areas: where, when & why?

WP5 – PLANNING THE ADAPTATION

D.5.2.2 - Booklet on adaptation plan

iv. Test-sites, pilot areas: where, when & why?

WP5 – PLANNING THE ADAPTATION

D.5.2.2 – Booklet on adaptation plan

iv. Test-sites, pilot areas: where, when & why?

WP5 – PLANNING THE ADAPTATION

v. Monitoring, evaluating and optimizing of adaptation plan: how to improve?

- ✓ UPGRADE SIMULATION MODELS
- ✓ ADJUST ACTIONS AS SUGGESTED
 BY EXPERIENCE
- ✓ OPTIMIZE MONITORING NETWORK

- ✓ DISCUSS RESULTS OBTAINED (WEAKNESS AND STRENGHT)
- ✓ TEST & INTRODUCE NEW TECHNOLOGIES

- ✓ VULNERABILITY & RISK
- ✓ ADAPTATION STRATEGIES AND ACTIONS

LEARN ACT

✓ MONITOR ENVIRONMENTAL (AND SOCIO-ECONOMIC RELATED)
PARAMETERS

- OBSERVE
- CHECK SALT INTRUSION LEVEL IN THE COASTAL AQUIFER
- ✓ APPLY STRATEGIES
- ✓ PERFORM ACTIONS

vi. Extensive run of adaptation plans: what's the goal?

CONCLUSIONS

SWI – Salt water intrusion

- i. Predictable
- ii. Detectable
- iii. Can be mitigated with a progression of actions
- iv. The local experiences of MAR (managed aquifer recharge) can be decisive for the prevention / reduction of the phenomenon

GOOD WORK AND THANKS FOR YOUR ATTENTION

UniAdrion

